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Abstract In recent years, outstanding molecular ap-
proaches have been used to investigate genes and
functions involved in plant-microbe endosymbioses. In
this review, we outline the use of proteomic analysis,
based on two-dimensional electrophoresis and mass
spectrometry, to characterize symbiosis-related proteins.
During the last decade, proteomics succeeded in identi-
fying about 400 proteins associated with the development
and functioning of both mycorrhizal and rhizobial sym-
bioses. Further progress in prefractionation procedures is
expected to allow the detection of symbiotic proteins
showing low abundance or being present in certain cell
compartments.
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Proteins · Two-dimensional electrophoresis · Mass
spectrometry

Introduction

In recent years, outstanding molecular approaches have
been used for the identification of genes and functions
involved in plant-microbe endosymbioses. Following the
first completion of genome sequencing projects, biolog-
ical research has developed high throughput genetic
programs with multiparallel analyses of gene transcripts,
proteins and metabolites, that are now tentatively trans-
posed to the world of mycorrhizal and rhizobial sym-
bioses (Franken and Requena 2001; Colebatch et al.

2002a, 2002b). Major advances have been realised thanks
to the use of plant mutants, isolated following ethyl
methane sulfonate treatment, gamma-ray irradiation,
insertion mutagenesis, or screening for natural variants
(Sagan et al. 1995; Borisov et al. 1999; Penmetsa and
Cook 2000). The mutants studied are defective in defined
steps of the symbiosis, helping to dissect the sequence of
events leading to a mycorrhiza or a nodule (Catoira et al.
2000; Walker et al. 2000; Marsh and Schultze 2001).
Interestingly, common steps in the early symbiotic
pathways were deduced from the analysis of mycorrhizal
and rhizobial mutants (Marsh and Schultze 2001). A
common feature of mutants sharing this pathway is the
lack of extensive root hair deformation; however, genes
need yet to be assigned to these genetic loci, in order to
get an insight into the precise functions involved.
Recently, the molecular genetic linkage map of Medicago
truncatula was published (Thoquet et al. 2002). Based on
large-insert bacterial artificial chromosome libraries,
map-based cloning has lead to the isolation of two
candidate genes encoding for a basic leucine zipper-type
zinc-finger protein and a receptor kinase with a leucine-
rich repeat region in the putative external domain
(Stougaard 2001).

Genomic approaches have mainly been initiated in
Lotus japonicus (Cyranoski 2001) and M. truncatula
(Journet et al. 2001, 2002; Frugoli and Harris 2001;
Oldroyd and Geurts 2001). These model legume systems
have received increasing attention during recent years,
due to their simple diploid genome, short life cycle, ease
of transformation and regeneration (Barker et al. 1990;
Handberg and Stougaard 1992). However, by comparison
to Arabidopsis thaliana, L. japonicus and M. truncatula
bear relatively large genomes (~500 Mb). Although an
international genome sequencing project has recently
been launched for M. truncatula (http://www.noble.org/
press_release/medicago/NewsConference2001/Medicago
Sequencing Project.htm) available genomic information
currently lies essentially under the form of expressed
sequence tags (ESTs) (Kawasaki and Murakami 2000;
Bell et al. 2001). A regularly updated database gathering
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more than 150,000 M. truncatula ESTs, representing
roughly 29,000 clustered sequences, is held by the
Institute for Genomic Research, Rockville, Maryland
(Quackenbush et al. 2000). In France, a joint program
between the Genoscope (Evry), the CNRS-INRA LBM-
RPM (Toulouse) and INRA-Universit� de Bourgogne
BBCE-IPM (Dijon) laboratories, produced 24,000 ESTs
from control plants, nodules and mycorrhizas, leading to
about 6,400 distinct genes (Journet et al. 2002). Concern-
ing the microsymbionts, complete genome sequencing
was achieved for Mezorhizobium loti (Kaneko et al. 2000)
and Sinorhizobium meliloti (Galibert et al. 2001). In
addition, the 536-kb symbiotic plasmid of Rhizobium sp.
NGR234 (Freiberg 1997) and a 410-kb region of the
chromosome of Bradyrhizobium japonicum (Gottfert et
al. 2001) were sequenced and annotated. Arbuscular
mycorrhizal fungi bear large and highly repeated
genomes, a feature that completely hinders the develop-
ment of genomic analyses. Due to their obligate symbiotic
status, the amount of accessible mRNA material is very
limited; however, many limitations have been overcome
with the help of polymerase chain reaction (PCR)-based
methods (Franken and Requena 2001) and in vitro
monoxenic cultures (St-Arnaud et al. 1996). Several
EST libraries have thus been constructed using activated
spores of Gigaspora rosea (Stommel et al. 2001;
Tamasloukht et al. 2003), Glomus mosseae (Requena et
al. 2002), presymbiotic mycelium of Gigaspora margari-
ta (Lanfranco et al. 2000) or Glomus inraradices (Lam-
mers et al. 2001) and extraradical hyphae of Glomus
intraradices (Sawaki and Saito 2001). Besides bioinfor-
matic annotation, functions now need to be assigned to
these sequences. In silico approaches can identify candi-
date differentially expressed genes; however, these must
be confirmed by quantifying their expression at the
molecular level through transcriptomics. In parallel,
proteomics will allow one to quantify the expression of
the gene products.

Studies of gene expression at the transcript level were
initially led by differential screening methods. Differen-
tial display reverse transcription PCR (Liang and Pardee
1992), differential screening of cDNA libraries and
suppressive subtractive hybridization helped to identify
genes involved both in mycorrhizal (Tahiri-Alaoui and
Antoniw 1996; Martin-Laurent et al. 1997; Krajinski et al.
1998; Lapopin et al. 1999; van Buuren et al. 1999, 2000;
Delp et al. 2000; Roussel et al. 2001; Requena et al. 2002;
Brechenmacher et al. 2003; Tamasloukht et al. 2003;
Wulf et al. 2003) and rhizobial (Gamas et al. 1996;
Lievens et al. 2001) symbioses. With the increasing
number of available EST sequences, the RNA accumu-
lation of numerous genes will now be possible through the
use of cDNA arrays (Duggan et al. 1999). In particular,
micro- and macro- arrays will be soon available to the M.
truncatula European scientific community (Journet et al.
2002).

Proteomics: why and how?

Knowledge of where and when proteins are expressed is
essential for understanding biological processes. Indeed,
RNA and protein amounts might not always correlate as
demonstrated by analyses in yeast (Gygi et al. 1999b;
Santucci et al. 2000) and mammalian cells (Gerner et al.
2000). Post-transcriptional mechanisms include control of
translation rate and protein turnover (Pradet-Balade et al.
2001). Most often, proteins may also be regulated by post-
translational modifications, more than 200 different types
of which have been reported, including glycosylation,
phosphorylation, ribosylation, palmitoylation or sulpha-
tion (Gooley and Packer 1997). Originally coined in 1995
by Marc Wilkins, the term “proteome” describes the
“protein complement of the genome” (Wilkins et al.
1995). Proteomics is thus the large-scale analysis of
proteins. Traditionally, this technology is based on the
combination of two-dimensional electrophoresis (2DE),
allowing the separation of denatured protein polypeptides
according to their isoelectric points and molecular
weights, and mass spectrometry identification methods,
either by peptide mass fingerprinting or de novo sequenc-
ing.

Protein extraction process and 2DE

Sample preparation is the most critical step in 2DE since a
proteome consists of many proteins differing according to
their tissue localization, abundance, sub-localization and
chemical properties including solubility. Many sample
preparation methods have therefore been developed
(Cordwell et al. 2000, G�rg et al. 2000). Interestingly,
in the case of endomycorrhizal symbiosis, more recent
methodological improvements were aimed at carrying out
proteomic and transcriptomic approaches on the same
biological material (Dumas-Gaudot et al. 2003a).

Since it was first introduced in 1975 (O’Farrell 1975),
2DE has evolved at different levels. The isoelectrofocus-
ing first dimension which was originally based on carrier
ampholyte gradients, is now based on immobilized pH
gradients (IPGs; Bjellqvist et al. 1982) allowing higher
resolution and reproducibility, as well as higher loading
capacities, an asset for the realization of micropreparative
gels (Bjellqvist et al. 1993; Blomberg et al. 1995; G�rg et
al. 1998). The principle of IPG technology lies in the use
of immobilines, acrylamide derivatives which are copoly-
merized within the gel matrix, overcoming the hindrance
of gradient instability. When immobilines carrying groups
with varying pKs are mixed in various proportions, any
pH scale can be formed, from wide (G�rg and Weiss
1998) to ultra narrow, allowing one to focus on specific
isoelectric points while keeping a high resolution (Wild-
gruber et al. 2000; Tonella et al. 2001). The second
dimension is based on the discontinuous sodium dodecyl
sulphate gel system described by Laemmli (1970). The
polyacrylamide percentage is generally fixed but may
also be a gradient in order to gain resolution in the display
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of polypeptides (G�rg and Weiss 1999). Additionally, the
TRIS-tricine method designed by Schagger and von
Jagow (1987) may be employed to focus on low
molecular weight polypeptides (Jan et al. 2001). With
these improvements in the resolution power of 2DE, there
has been increasing interest in the preparation of the
protein sample. Prefractionation methods such as affinity
chromatography (Geng et al. 2001), chromatofocusing
(Herbert and Righetti 2000) or subcellular fractionation
(van Wijk 2000) aim at enriching protein fractions,
thereby increasing the number of proteins resolved.
Moreover, solubilization methods have improved due to
the use of novel detergents such as sulphobetaines
(Rabilloud et al. 1997) helping in particular to separate
and display membrane proteins (Molloy et al. 1998;
Santoni et al. 2000). After separation, proteins can be
detected either by autoradiography for labelled proteins,
or after Western blotting, by staining the membrane or
incubating it with specific antibodies, or directly, by gel
staining. Among gel staining methods, silver staining is
most traditionally employed due to its high sensitivity
(Rabilloud 1999); however, colloidal Coomassie blue is
preferred when subsequent mass spectrometry analyses
are needed (Neuhoff et al. 1988). Recently, fluorescent
Sypro dyes have emerged as the ideal alternative,
showing high sensitivity and linearity over 5 orders of
magnitude, and minimal background in mass spectrom-
etry (Patton 2000). After digitalization, gels are analysed
by computer-assisted image analysis, allowing the auto-
matic detection of protein spots, quantification and
comparison between different gel images (Jia et al. 2001).

Mass spectrometry identification methods

After proteins of interest have been mapped, micro-
preparative gels are realised (Bjellqvist et al. 1993). The
protein spots are excised and digested with an endopro-
tease, generally trypsin, directly within the gel matrix
(Rosenfeld et al. 1992). Peptides are then analysed by
mass spectrometry (MS), allowing one to obtain either a
peptide mass fingerprint of the protein, or internal amino
acid sequences (Corthals et al. 2000). Peptide mass
fingerprinting (PMF) is based on the computer-driven
matching between experimentally obtained masses of
peptides, and in silico calculated masses of protein
sequences deposited in databases (Mann et al. 1993).
This approach is ideally suited to genetically well-
characterized organisms, for which the entire genome
has been sequenced such as, for example, Arabidopsis
thaliana or Oryza sativa (Millar et al. 2001; Fukuda et al.
2003), or for which numerous ESTs are available,
provided those are long enough. However, it is not
adapted to cross-species identification, although specific
softwares have been designed to overcome this problem
(Wilkins and Gooley 1998). Sequencing peptides is
possible by mass spectrometry, through the generation
of peptide ladders, in which individual peptides differ in
length by one amino acid. These peptides are generated

by fragmentation according to a model defined by
Biemann (1990). Fragmentation of the peptide bonds
will produce a, b , and c series ions when the positive
charge remains at the peptide N-terminus, and x, y , and z
series ions when the charge remains at the peptide C-
terminus. Mass spectrometers generally consist of three
components: a ionization source, a mass analyser, and a
detector, among which various combinations can be
made. MS analyses of proteins and peptides take advan-
tage of two “soft” ionization methods: matrix-assisted
laser desorption ionization (MALDI; Karas and Hil-
lenkamp 1988) and electrospray ionization (ESI; Fenn et
al. 1989). In MALDI, peptides are first crystallized with a
small molecular aromatic “matrix” on a metallic slide,
which is then inserted into the apparatus. Under high
vacuum and voltage conditions, a laser beam is directed
onto the slide, resulting in the desorption and sublimation
of the matrix crystals. ESI consists in spraying the
peptides under atmospheric pressure and high voltage,
from the tip of a fine capillary. As the highly charged
droplets evaporate, peptide ions with one or more charged
protons are ejected into the gas phase. Three mass
analysers are generally employed to characterize the
ionized peptides: ion trap (IT), triple quadrupole (Q3) and
time-of-flight (TOF). Hence, MALDI-TOF, ESI-Q3 and
ESI-IT are the mass spectrometers most commonly used
for protein and peptide analyses. However the introduc-
tion of “hybrid” instruments such as ESI-Q-TOF and
more recently, MALDI-Q-TOF has revolutionized the
technology (Shevchenko et al. 2000). MALDI-TOF is the
simplest mass spectrometer both conceptually and in
design. The mass over charge (m/z) ratios of ionized
peptides are measured with high accuracy and automati-
zation allows one to analyse hundreds of samples per day.
This instrument is traditionally used to generate peptide
mass fingerprints; however, sequence information may be
obtained by post-source decay, a process in which ions
acquire excess energy causing their fragmentation (Kauf-
mann et al. 1994). ESI-Q3 are extremely versatile
instruments based on a first quadrupole mass filter,
allowing the selection of ions with a certain m/z ratio,
while a second quadrupole is used for collision induced
dissociation (CID), and a third to record the m/z of the
fragment ions. In ESI-IT, peptide ions are trapped by a
radio-frequency field in the quadrupole ion trap, and by
applying a small voltage, become unstable, are ejected
and detected. This feature also allows CID and MSn

experiments, helping in the detailed structural analysis of
components, such as glycopeptides. The ESI-Q-TOF is a
hybrid mass spectrometer showing enhanced resolution
by comparison to the other ESI-based instruments, and
intermediary sensibility between those and MALDI-
TOFs. The presence of a collision cell allows CID
fragmentation and subsequent sequence analysis of pep-
tides. Two types of MS data are thus generated for protein
identification by correlation with sequence databases:
accurate peptide masses or/and fragmentation spectra.
Several software tools, based on different algorithms, are
available on the web for comparing these experimental
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results to theoretical mass data derived from sequence
databases (Fenyo 2000, Table 1). When the protein
sequence is represented in a database, the identity can
thus be rapidly established. Conversely, de novo sequenc-
ing has to be performed by interpreting fragmentation
data, which is slower and requires more operator input
(Corthals et al. 2000).

Proteomics of plant-microbe symbiotic interactions

Although 2DE was used quite early to study mycorrhizal
and rhizobial symbioses, very few proteins were identi-
fied, due to the limitation of both electrophoretic and
identification methods (Table 2). Concerning mycor-
rhizas, pioneering studies were achieved with ectomyc-
orrhizas in the early 1990s (Hilbert et al. 1991; Simoneau

Table 1 On-line protein iden-
tification algorithms for mass
spectrometric data. PMF Pep-
tide mass fingerprinting, FIS
fragment-ion search

Algorithm URL Identification mode

PeptIdent http://us.expasy.org/tools/peptident.html PMF
Mascot http://www.matrixscience.com/ PMF, FIS
MS-Fit http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm PMF
MS-Tag http://prospector.ucsf.edu/ucsfhtml4.0/mstagfd.htm FIS
PepFrag http://prowl.rockefeller.edu/PROWL/pepfragch.html FIS
Profound http://129.85.(19.(192/profound_bin/WebProFound.exe PMF
PepSea http://(195.41.108.38/PepSeaIntro.html PMF
Lutefisk http://www.immunex.com/researcher/lutefisk/ De novo sequencing

Table 2 Proteomic studies in the field of plant-microbe symbioses

Biological models Proteins characterized
by 2 DE

Identified
proteins

References

Ectomycorrhizal symbiosis

Eucalyptus globulus / Pisolithus tinctorius 15 0 Hilbert et al. (1999)
Betula pendula / Paxillus involutus 35 0 Simoneau et al. (1993)
Eucalyptus grandis / Pisolithus tinctorius 26 0 Burgess et al. (1995
E. grandis / P. tinctorius 26 0 Burgess and Dell (1996)
Pinus sylvestris / Suillus bovinus 9 9 Tarkka et al. (2000)
Tuber borchii 23 5 Vallorani et al. (2000)

Endomycorrhizal symbiosis

Allium cepa / Glomus mosseae 15 0 Garcia-Garrido et al. (1993)
Nicotiana tabacum / G. mosseae / Glomus intraradices 34 0 Dumas-Gaudot et al. (1994)
Lycopersicon esculentum / G. intraradices 5 0 Simoneau et al. (1994)
Pisum sativum / G. mosseae 42 0 Samra et al. (1997)
L. esculentum / G. mosseae 44 0 Benabdellah et al. (1998)
L. esculentum / G. mosseae 14 0 Dassi et al. (1999)
L. esculentum / G. mosseae 26 1 Benabdellah et al. (2000)
Triticum aestivum / G. mosseae 1 1 Fester et al. (2003)
Medicago truncatula / G. mosseae 55 8 Bestel-Corre et al. (2002)
P. sativum / G. mosseae 7 6 Repetto et al. (2003)
M. truncatula / G. mosseae 34 6 Bestel-Corre (2002)
Ri T-DNA Daucus carota / G. intraradices 8 2 Bestel-Corre (2002)
G. intraradices 450 6 Dumas-Gaudot et al. (2003b)
Acaulospora laevis / Gigaspora rosea / Scutellospora
castanea / G. mosseae

12 0 Samra et al. (1996)

Rhizobial symbiosis

Vigna unguiculata / Rhizobium sp. NGR234 / R. fredii /
Sinorhizobium meliloti

16 0 Krause and Broughton (1992

Glycine max / Bradyrhizobium japonicum 12 1 Winzer et al. (1999)
G. max / B. japonicum 17 17 Panter et al. (2000)
Melilotus alba / S. meliloti 600 100 Natera et al. (2000)
Trifolium subterraneum / Rhizobium leguminosarum 16 10 Morris and Djordjevic (2001
R. leguminosarum 4 12 Guerreiro et al. (1997)
R. leguminosarum 22 5 Guerreiro et al. (1998)
S. meliloti 52 23 Guerreiro et al. (1999)
B. japonicum 19 15 Munchbach et al. (1999)
B. japonicum 32 28 Dainese-Hatt et al. (1999)
S. meliloti 189 52 Chen et al. (2000a)
S. meliloti 60 11 Chen et al. (2000b)
M. truncatula / S. meliloti 51 7 Bestel-Corre et al. (2002)
M. truncatula / S. meliloti 41 11 Bestel-Corre (2002)
S. meliloti 41 41 Bestel-Corre (2002)
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et al. 1993; Burgess et al. 1995; Burgess and Dell 1996)
allowing researchers to detect symbiosis-related (SR)
polypeptides, up-regulated or newly induced in mycor-
rhizal roots, as well as down-regulated polypeptides, by
comparison to control roots and mycelium extracts. Only
very recently were some SR proteins identified by mass
spectrometry and N-terminal sequencing (Tarkka et al.
2000), as well as mycelial proteins (Vallorani et al. 2000).
A large-scale proteomic project is now an ambition in
order to match these data with EST data obtained for
Pinus sylvestris (Tagu, personal communication). For
arbuscular mycorrhizas, a similar progression was fol-
lowed, from descriptive studies (Garcia-Garrido et al.
1993; Dumas-Gaudot et al. 1994; Simoneau et al. 1994;
Samra et al. 1997; Benabdellah et al. 1998; Dassi et al.
1999) to the first identifications of a vacuolar H+-ATPase
and a Myk15 protein with an unknown function (Benab-
dellah et al. 2000; Fester et al. 2003). Additionally,
protein profiles of both dormant and germinated spores of
several fungi were compared (Samra et al. 1996). Now,
proteome analysis is used as a powerful tool to reveal
more and more proteins involved in mycorrhiza develop-
ment and functioning including proteins involved in
defence response, root physiology and the respiratory
pathway (Dumas-Gaudot et al. 2001; Bestel-Corre et al
2002). Proteomics of the rhizobial symbiosis also started
a decade ago (Krause and Broughton 1992), and there was
renewed interest in the technique several years after, with
studies focussing either on nodule proteins (Winzer et al.
1999; Panter et al. 2000; Natera et al. 2000; Morris and
Djordjevic 2001) or on the isolated bacteria (Guerreiro et
al. 1997, 1998, 1999; Munchbach et al. 1999; Dainese-
Hatt et al. 1999; Chen et al. 2000a, 2000b). Lately, a
proteome reference map of M. truncatula, the model
system used to study root symbioses, was established
(Mathesius et al. 2001). In our laboratory, several
proteomic studies were completed recently, focussing on
mycorrhizal and rhizobial symbioses, challenged with
different pollutants. Concerning mycorrhization, 73 new-
ly induced protein spots were detected in M. truncatula -
G. mosseae and Ri T-DNA Daucus carota - G. in-
traradices interactions, among which 16 proteins were
analysed, with homologies found for 14 of them. Besides
proteins belonging to previously reported categories
(Bestel-Corre et al. 2002), proteins involved in signalisa-
tion and gene regulation processes were also identified
(Bestel-Corre 2002). Additionally, putative amino acid
sequences were obtained for nine proteins of G.
intraradices extraradical mycelium, among which ho-
mologies were found for six proteins including enzymes
from central metabolism (Dumas-Gaudot et al. 2003b).
For the first time, a systematic proteome analysis of
mycorrhization has been initiated, opening up the possi-
bility of directly identifying the functions taking place in
this symbiotic process. Concerning nodulation, 74 newly
induced proteins were detected in the M. truncatula - S.
meliloti interaction, among which 16 proteins were
analysed and identified (Bestel-Corre 2002). Proteomics
also helped to study the impact of sewage sludges

polluted with heavy metals or polycyclic aromatic
hydrocarbons, on mycorrhization and nodulation, both
on the interactions, and on the isolated microsymbionts.
Although a control sludge showed positive effects
towards M. truncatula plants non-inoculated or inoculated
with G. mosseae or S. meliloti, the polluted sludges
exhibited clear negative effects on plant growth and root
symbioses. A clear correlation was established between
some symbiosis-related proteins and the levels of myc-
orrhization and nodulation, revealing a potential use of
this technology for environmental studies (Bestel-Corre
2002). Sewage sludge-related proteins were also identi-
fied in mycorrhized or nodulated M. truncatula roots
(Bestel-Corre 2002), and in cultured S. meliloti cells
(Bestel-Corre 2002), thus giving some supplementary
information when these data were compared to physio-
logical data. Similarly, variations in the pea (Pisum
sativum L.) root proteome were identified in response to
cadmium stress, during the symbiotic interaction with G.
mosseae (Repetto et al. 2003). This targeted proteomic
approach enabled workers to reveal two cadmium-
induced proteins (a short-chain alcohol dehydrogenase
and an UTP-1-phosphate uridylyltransferase) which were
mycorrhiza-regulated.

Future prospects

In the near future, further protein identifications will be
possible in the field of plant-microbe endosymbioses.
First, attempts should be made to identify those proteins
which were detected in the early steps of the symbioses.
To this end, considerable information may be gained by
studying the proteome of symbiosis-defective mutants
(Marsh and Schultze 2001). The use of Ri T-DNA
transformed roots may help researchers to collect material
at the initial stages of the symbiosis, and this may be
realised with mycorrhizal carrot roots (Fortin et al. 2002)
or with M. truncatula -transformed roots, inoculated with
one or the other symbiont (Boisson-Dernier et al. 2001).
In particular, a method for isolating Colletotrichum
appressoria was published, which may be applied to
arbuscular mycorrhizal fungi (Hutchison et al. 2000).
Then, subcellular fractionation could be used to enrich
root extracts with specific proteins. This has already been
used successfully for a few cases in endomycorrhizal and
rhizobial symbioses, respectively (Benabdellah et al.
2000; Winzer et al. 1999; Panter et al. 2000). In
particular, membrane proteins may be further addressed
by taking advantage of the more recent significant
advances that have been achieved concerning their
extraction (Seigneurin-Berny et al. 1999; Ferro et al.
2000) and solubilization (Rabilloud 1998; Chevallet et al.
1998; Molloy 2000). More precisely, plasma membrane
proteins may be purified after aqueous two-phase parti-
tioning of the microsomal fraction (Santoni et al. 1998)
and special attention may be paid to the perisymbiotic
membrane, surrounding the arbuscules or the bacteroids.
This approach is being developed in soybean and Lotus
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japonicus nodules (Wienkoop and Saalbach 2003) and
might similarly be applied to arbuscule-containing cells.
Indeed, a technique has been published, which allows one
to obtain root cell fractions enriched with arbuscule-
containing cells (Fester et al. 1999). Likewise, intraradical
hyphae may be isolated (Saito 1995) in order to focus on
fungal proteins; however, considerable amounts of mate-
rial should be collected to achieve this aim, representing a
long and tedious task. Then, improvements can be applied
to the 2DE technique, by fractionating protein samples
into narrower pH ranges (subproteomics). This can be
achieved with narrow-range first-dimension IPG gels
(Wildgruber et al. 2000; Tonella et al. 2001) and ideally,
protein samples should be prefractionated with a chro-
matofocusing device such as the multicompartment
electrolyzer (Herbert and Righetti 2000). In order to
focus on specific proteins, prepurification may also be
realised, for instance by chitin affinity chromatography to
analyse chitin-binding proteins (Slezack et al. 2001).
Supplementary information may also be obtained by
specifically focussing on phosphorylated or glycosylated
proteins. Indeed, phosphoproteome analysis has previ-
ously been performed to study plant responses to bacterial
and fungal elicitors (Lecourieux-Ouaked et al. 2000; Peck
et al. 2001) and glycoproteins can also be easily
visualized after 2DE (Packer et al. 1998). Finally, more
refined proteomic tools have recently emerged, that could
be applied to the study of symbioses. The fluorescence-
based differential in gel electrophoresis technique allows
the differential analysis of two samples concurrently run
within the same gel, circumventing reproducibility prob-
lems and image analysis (Unlu et al. 1997). More
revolutionary are the multidimensional protein identifi-
cation (Washburn et al. 2001) and isotope-coded affinity
tag (Gygi et al. 1999a) methods, which by-pass 2DE by
directly analysing protein mixtures by mass spectrometry.
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